Stark Conjectures for Cm Curves over Number Fields
نویسنده
چکیده
In [1], Bloch constructs symbols in K2(E) for a CM elliptic curve E defined over Q, corresponding to divisors supported on torsion points of the curve. This construction, and the special properties of such curves, allowed him to prove the Beilinson conjecture for such curves. In [2], Deninger extends Bloch’s results, for certain elliptic curves ‘of Shimura type ’or ‘type (S) ’. For simplicity assume E has complex multiplication by the ring of integers OK of the complex quadratic field K, and E is defined over an extension F of K. Shimura showed [15, Theorem 7.44] that the following conditions are equivalent, and we will take either of them to mean that E is of type (S).
منابع مشابه
Arithmetic Teichmuller Theory
By Grothedieck's Anabelian conjectures, Galois representations landing in outer automorphism group of the algebraic fundamental group which are associated to hyperbolic smooth curves defined over number fields encode all arithmetic information of these curves. The goal of this paper is to develope and arithmetic teichmuller theory, by which we mean, introducing arithmetic objects summarizing th...
متن کاملElliptic Curves over Finite Fields
In this chapter, we study elliptic curves defined over finite fields. Our discussion will include the Weil conjectures for elliptic curves, criteria for supersingularity and a description of the possible groups arising as E(Fq). We shall use basic algebraic geometry of elliptic curves. Specifically, we shall need the notion and properties of isogenies of elliptic curves and of the Weil pairing....
متن کاملStark's Conjectures and Hilbert's Twelfth Problem
We give a constructive proof of a theorem given in [Tate 84] which states that (under Stark’s Conjecture) the field generated over a totally real field K by the Stark units contains the maximal real Abelian extension of K. As a direct application of this proof, we show how one can compute explicitly real Abelian extensions of K. We give two examples. In a series of important papers [Stark 71, S...
متن کاملIntroduction to Drinfeld Modules
(1) Explicit class field theory for global function fields (just as torsion of Gm gives abelian extensions of Q, and torsion of CM elliptic curves gives abelian extension of imaginary quadratic fields). Here global function field means Fp(T ) or a finite extension. (2) Langlands conjectures for GLn over function fields (Drinfeld modular varieties play the role of Shimura varieties). (3) Modular...
متن کاملThe Gauss Class-Number Problems
In Articles 303 and 304 of his 1801 Disquisitiones Arithmeticae [Gau86], Gauss put forward several conjectures that continue to occupy us to this day. Gauss stated his conjectures in the language of binary quadratic forms (of even discriminant only, a complication that was later dispensed with). Since Dedekind’s time, these conjectures have been phrased in the language of quadratic fields. This...
متن کامل